Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors
نویسندگان
چکیده
Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by means of a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.
منابع مشابه
Hierarchical dynamical models of motor function
Hierarchical models of motor function are described in which the motor system encodes a hierarchy of dynamical motor primitives. The models are based on continuous attractor neural networks, in which the packet of neural activity representing the position (in the state space) is moved by path integration using a motor efference copy after training with a traced associative learning rule. Sequen...
متن کاملLearning movement sequences with a delayed reward signal in a hierarchical model of motor function
A key problem in reinforcement learning is how an animal is able to learn a sequence of movements when the reward signal only occurs at the end of the sequence. We describe how a hierarchical dynamical model of motor function is able to solve the problem of delayed reward in learning movement sequences using associative (Hebbian) learning. At the lowest level, the motor system encodes simple mo...
متن کاملRobot Skill Learning
Starting from theoretically sound robotic control structures for task representation and execution, we replace analytic modules by more flexible learned ones [13]. To this end, we tackle problems such as accurate but compliant execution, learning of elementary behaviors, hierarchical composition of behaviors, and parsing complex demonstrations into elementary behaviors. Accurate execution of mo...
متن کاملMovement Segmentation and Recognition for Imitation Learning
In human movement learning, it is most common to teach constituent elements of complex movements in isolation, before chaining them into complex movements. Segmentation and recognition of observed movement could thus proceed out of this existing knowledge, which is directly compatible with movement generation. In this paper, we address exactly this scenario. We assume that a library of movement...
متن کاملSelf-organizing continuous attractor networks and motor function
Motor skill learning may involve training a neural system to automatically perform sequences of movements, with the training signals provided by a different system, used mainly during training to perform the movements, that operates under visual sensory guidance. We use a dynamical systems perspective to show how complex motor sequences could be learned by the automatic system. The network uses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2013